
USENIX Association  26th Large Installation System Administration Conference (LISA ’12) 163

Efficient Multidimensional Aggregation for Large Scale
Monitoring

Lautaro Dolberg, Jérôme François, Thomas Engel
University of Luxembourg

SnT - Interdiciplinary Centre for Security, Reliability and Trust.
Email: firstname.lastname@uni.lu

Abstract
Today, network monitoring becomes necessary on

many levels: Internet Service Providers, large compa-
nies as well as smaller entities. Since network monitor-
ing supports many applications in various fields (secu-
rity, service provisioning, etc), it may consider multiple
sources of information such as network traffic, user activ-
ity, network events and logs, etc. All these ones produce
voluminous amount of data which need to be stored, vi-
sualized and analyzed for administration purposes. Var-
ious techniques to cope with scalability have been pro-
posed as for example sampling or aggregation.

In this paper, we introduce an aggregation technique
which is able to handle multiple kinds of dimension,
i.e. features, like traffic capture or host locations, with-
out giving any preference a priori to a particular feature
for ordering the aggregation process among dimensions.
Furthermore, feature space granularity is determined on
the fly depending on the desired events to monitor. We
propose optimizations to keep the computational over-
head low.

In particular, the technique is applied to network re-
lated data involving multiple dimensions: source and
destination IP addresses, services, geographical location
of hosts, DNS names, etc. Thus, our approach is vali-
dated through multiple scenarios using different dimen-
sions, measuring the impact of the aggregation process
and the optimizations as well as by highlighting the abil-
ity to figure out important facts or changes in the net-
work.

1 Introduction

Monitoring is a fundamental part of network manage-
ment. It is essential for checking the network activity
and status, e.g. tracking abnormal facts or changes (at-
tacks, configuration errors, failures, etc). Several steps
are required for this. First, data has to be collected from

various sources and locations. Then, such data must be
stored before it can be directly visualized or analized by
human expert to provide summarized information, like
alarms, to the network operational team.

For example, usual data collected in network might
consist of full packet captures on a network or Netflow
[9] records, for ISPs (Internet Service Provider), which
are known to be helpful in network management context
[10]. DNS traffic is also a valuable information in the
security context for detecting botnets [6] and malicious
domains hosting malware [1]. Geographical or network
location of hosts might be helpful for placing servers at
the right place in particular within a CDN (Content Dis-
tribution Network). Application level analysis can in-
clude monitoring of different exchange message types
for a given protocol. For instance, a simple counter for
error messages in SIP or HTTP may indicate some prob-
lems on the network. IDS (Intrusion Detection Systems)
or firewall alerts are clearly relevant by nature.

Thus, there is plenty of valuable information which
might be also correlated together, network traffic, DNS
names or host locations, etc.

Since nowadays volume of such information grows
rapidly, scalability represents a challenge. When in-
formation volume results to be massive, computing re-
sources infrastructure (storage and analysis) demands for
fine grained information, such as deep packet inspection,
are too high to be practicable, in some cases inaccurate.
For example, thanks to our partners involved in the oper-
ational field in Luxembourg, we obtain a Netflow and a
DNS dataset. The average number of flows is 60,000/sec
and can reach 100,000/sec. For forensics analysis, we
faced with the a huge size of the DNS dataset including
around 40M unique records over a 10 months period.

In this paper, we improve network monitoring by tar-
geting scalability issues for storage, analysis and visu-
alization of huge volumes of network related data. We
analyze multiple sources such as traffic flows or DNS
records to infer a global knowledge that might be help-
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ful to identify particular events (normal or abnormal).
Recent research has shown promising results for ag-
gregation based techniques on macroscopic monitoring
[8, 34, 20]. Although we explored aggregation over des-
tination or source IP address separately in [34], this paper
proposes a new method implemented as an open source
tool which:

• handles multiple types of data

• defines a new tree based structure and algorithms to
combine them into a single tree,

• is evaluated in multiple scenarios

• can be easily extended to include new features

Hence, we propose MAM (Multidimensional Aggre-
gation Monitoring) is proposed for network related data
aggregation including many features (also called dimen-
sions) on very large collections. The goal of this paper is
to present MAM from a formal point of view as well as
from a practical point of view and study its viability for
network monitoring purposes.

MAM can consider simultaneously the source and des-
tination IP addresses and the ports of network traffic. A
fundamental idea of our approach is to aggregate data,
such as traffic load, over multiple dimensions without
giving any preference to one. Considering the previous
example, it means that the data will not necessarily be ag-
gregated on source IP addresses first and then on ports.
Usually, this decision is made by human experts using
their own expertise. Some of them will monitor the usage
per service first (ports) and then per IP addresses whereas
others prefer to have statistics per IP addresses first and
then the details for each service. In the first case, statis-
tics about global traffic of an IP address are not directly
available and need to be reconstructed by iterating over
all ports. Adding more dimensions will add other levels
that make the choice of ordering difficult and computa-
tional less efficient if some statistics need to be recon-
structed afterwards.

Moreover, IP addresses monitoring usually relies on a
subnet basis (/X networks) where the human administra-
tor has to specify the prefix size X to use. In our case, the
space of a dimension is not split a priori like a fixed size
of subnets. The aggregation can thus lead to keep track of
information related to IP subnets having different sizes.

In fact, the aggregation process is guided by the de-
sired events to monitor, reaching a quantifiable
visibility (5% of the traffic load in bytes or packets for in-
stance) which will alleviate the administrator from both
problematic decisions (order of dimensions and split over
the space).

Scalability can be achieved by optimizing the usage
of storage data structures. MAM leverages a tree based
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Figure 1: MAM overview

structure to store data in a hierarchical representation. It
has a bounded size and different strategies are described
to satisfy this constraint. Obviously, the strategy can im-
pact the relevance of stored data as well as the aggrega-
tion process itself.

This paper is organized as follows. Section 2
overviews the proposed tool. Section 3 is related work.
Section 4 formally defines the data structures for multidi-
mensional aggregation. Section 5 explains spatial aggre-
gation techniques. Section 6 proposes several strategies
to cope with scalability. Section 7 is dedicated to the
evaluation. Finally, Section 8 concludes the paper and
describes our future work.

2 MAM Overview

Figure 1 highlights the main steps of our tool and so the
main components. The objective is to aggregate multidi-
mensional data into a single tree structure for each time
window (temporal dimension). If the timing information
is not provided, MAM can still be used to create a single
tree for the whole dataset.

For being executed, the user has to provide input data
as well as a data model describing the type of data and
how to parse and aggregate it. Some data models are
already provided with the tool as for example the IP ad-
dress, services or geographical coordinates. Therefore,
the first step is to parse the input data. For each data
instance, (usually a line in a file), MAM creates a node
accordingly. The latter is inserted into the current tree
based on the hierarchy of each dimension (next sections
provide details). These steps are repeated until the tree
has to be compressed, nodes in the tree are ag-
gregated from the leaves to the root for keeping solely
relevant and aggregated information. This happens when
the size of the tree is too high (online aggregation) for
reducing resources consumption or at the end of a time
window (simple aggregation). In this case, the tree is re-
turned as a result to the user and MAM will continue the
process starting from parsing next time window.
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3 Related Work

Regarding scalability concerns, flow based informa-
tion such as Netflow records [9], compresses IP traf-
fic in a compact format [9]. Even mainly supported
by most commercial routers, they are still known to re-
quire a large storage infrastructure, since Netflow records
growth can be undefined.

Thus, sampling techniques have been proposed in the
past [11, 29]. Sampling may clearly resolve the scalabil-
ity issues by discarding large portion of data. However,
the main drawback is the difficulty to set an appropri-
ate sampling rate to discard enough information without
impacting the relevance of observations made from the
remaining data.

Using efficient data structures to optimize storage and
access was also explored. Giura et al. [17] introduce Net-
Store, an efficient storage infrastructure for network flow
data using a column-oriented storage that outperforms
row-based techniques. BadHoods[27] performs aggre-
gation on a subnet basis to demonstrate that malicious
hosts tend to be close into the IP space but they highlight
the difficulty to set appropriately the prefix size of sub-
nets to monitor. In addition, Fenwick trees [12] handle
single dimension by storing efficiently prefix sums for
given values represented as a table.

Flow aggregation based on entropy is proposed in [19]
where the authors introduce a two dimensional hashtable
(source and destination IP addresses). An alternative is to
collect data from multiple sources as proposed in [35] to
build a community graph for sharing information about
host activities based on IP addresses. The scalability is
addressed through data filtering as well as using multiple
graph construction which can be achieved independently
in parallel. In the past, hosts interaction is also a man-
ner to compress data into a graph representation. This
is known to be useful for detecting anomalies like bot-
nets [15] in particular when instantiated with the MapRe-
duce paradigm for being executed in a distributed fashion
[14]. Another solution for traffic aggregation was pre-
sented in Aguri [8] and further on in our previous work
Danak [34]. Both of them leverages a tree based struc-
ture for storing traffic data on a single dimension. IP
addresses are represented by a tree following the com-
mon hierarchy of the subnets. Using such structures, it
has been proved that anomalies in large scale networks
can be tracked as for instance spam or distributed denial
of service.

Other sources of information are relevant as noticed in
introduction. Assuming DNS data, a context-aware clus-
tering method is proposed in [31]. In fact, two trees are
created. One for representing the IP subnets like in [8]
and one for representing the DNS domains in a similar
manner based on the parent-child relations between sub-

domains. Log analysis is also concerned and recent ad-
vances like [21] promote the efficient programming de-
sign as well as data structure for correlating log events in
a scalable way.

From a general point of view, storing multi-
dimensional data has been investigated in the past. While
data structures cited in [5, 13] are plausible modeling
tools for K-Dimensional spaces, they are recommended
to be used on regular partitioned spaces. Therefore,
the previous mentioned data structures requires a pre-
established order among dimensions. Some contribu-
tions to this subject was made by [28] on Flamingo, and
EtherApe [3, 33]. Regarding Data Cube [18], maintain-
ing the whole cube structure is costly from a computa-
tional point of view. Furthermore, data requires to be
stored within a relational structure and aggregation needs
to be fully specified by the user in particular the granular-
ity and the order among dimensions unlike our approach.
Some cube approaches fail to process online data since
they become no longer valid after new data has been
added. In case of our tool, it is possible to append nodes
on the fly without additional cost. Flamingo is a visu-
alization tool for monitoring Internet traffic in real time,
rendering 3D images. Aggregation is also applied by IP
prefix, i.e. subnets, and the prefixes are chosen based on
routing table entries. EtherApe is a network traffic mon-
itoring tool. Network traffic is displayed as nodes, as for
example IP addresses, and links with color codes to rep-
resent different protocols.

Some tools are also dedicated to visualization.
ENAVis [23] represents multi-dimensional data into a
graph where each node contains a single dimension. This
helps to see relationships between users and hosts for
example. Even if similar to our work, the main fun-
damental difference is that we chose a tree-based struc-
ture where nodes represent multi-dimensional instances
of data. Furthermore, our approach integrates an online
aggregation technique for automatically split the multi-
dimensional space in subspaces. SIFT [36] includes IP
subnet aggregation but the user still has to set the gran-
ularity of details. This is different from our approach,
the same tree subnets can be visualized once they reach a
certain threshold of measurable information like the traf-
fic load.

Also our work is mainly complementary to [34, 8],
MAM aims to aggregate relevant data on several spatial
dimensions (IP addresses, ports, etc) like [23, 28]. How-
ever, it differs from these latter since the order between
dimensions is not defined a priori as well as the space
division is automatically determined.
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(a) Regular IP Address space partitioning (b) Dynamic IP Address space partitioning

Figure 2: Different IP Address space partitioning examples

4 Data Aggregation Structures

Aggregation consists to reduce granularity of data by
grouping data instances according to a criteria, i.e. shar-
ing similar properties.

For instance, aggregation over the IP address space
could consider the shared prefix as the property leading
to monitor network traffic by subnet. Defining the size
of the subnet, equivalent to the prefix size, is quite arbi-
trary like /24, /28, etc. Changing this parameter leads to
different observations regarding the context [27]. This is
illustrated in Figure 2 with a naive case example where a
regular partition of IP address space, in Figure 2(a), may
not lead to identify the clear subgroups of hosts unlike
a dynamic partitioning in Figure 2(b). For example, to
monitor the hosts listed on Traffic Flow Table 1, monitor-
ing /16 networks will give a general overview of the net-
work activity which is probably too coarse and /24 seems
more useful. However, using /24 or more can be too fine-
grained at the Internet level. Moreover, since traffic is
probably not well-balanced between machines and sub-
nets, some of them should be more carefully monitored,
equivalent to consider higher prefix size, while others
may be monitored with a coarse-grained view (small pre-
fix size).

To counter this problem, aggregation can be guided by
the nature of the events to monitor. For example, the traf-
fic load can be aggregated in order to observe phenome-
nas reaching a certain proportion of the entire traffic load
or of IDS alerts.

For aggregation on a single dimension, a tree struc-
ture is suitable [34, 8]. Spatial representation of a bi-
dimensional space can be done using a quad tree struc-
ture [13] where each internal node has exactly four chil-
dren. Normally the space is recursively portioned into
four quadrants or regions. Then for partitioning a three
dimensional space a similar structure, an oct-tree, can be
used. A general structure supporting M dimensions is a

multidimensional tree (k-d Tree [5]) for k-dimensional
space-partitioning. However, in our context, the dimen-
sional space division is not known in advance and done
on the fly when the tree is created.

In this paper, we consider features where it is possible
to derive an underlying hierarchical relationships cover-
ing all potential data instances represented as nodes in a
tree. Assuming two data nodes, one is qualified as more
specific or there is no relationship between them. For-
mally the hierarchical relationship between two nodes ni,
n j represent is given if there is a path from the root of the
tree to n j that passes through ni. In that case, ni is more
general than n j.

4.1 Single Dimension
Spatial and temporal aggregation on a single dimen-
sion for traffic flows was proposed in Aguri [8] and
Danak[34]. Temporal aggregation splits the dataset into
fixed size time windows on which spatial aggregation is
applied. We extend the notion of spatial aggregation to
multiple and generic dimensions (features).

IP address aggregation is performed by extracting the
traffic volume (bytes or packets) for the source or desti-
nation addresses. Aggregation is based on a tree structure
following the common subnet hierarchy where each node
represents an IP subnet or a single address. The total
volume of traffic transmitted is decomposed in particular
volumes expressed as proportions or percentages. Nodes
with a proportion of traffic lower than α are aggregated
into their parents. An example of this is given in Figure
3 from Traffic Flow Table 1. In this small example, only
nodes with more than 10% of the total traffic are kept. As
highlighted, root concentrates the global traffic of a /17
network. Each node contains the following information:

1. Dimension name and value (i.e: {app:ROOT},
{src_ip:0.0.0.0/0}, etc)

4
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Traffic Flow Table 1 Traffic flow example of a network nodes within 192.168.0.0/16 (Web and Mail services)

PORT PROTO KB TIME SOURCE DEST
80 TCP 1491 2010−02−24 0 2 : 2 0 : 1 5 1 9 2 . 1 6 8 . 6 . 2 9 2 . 2 5 0 . 2 2 1 . 8 2
110 TCP 988 2010−02−24 0 2 : 2 0 : 1 9 1 9 2 . 1 6 8 . 8 . 2 9 2 . 2 5 0 . 2 2 3 . 8 7
443 TCP 902 2010−02−24 0 2 : 2 0 : 2 7 1 9 2 . 1 6 8 . 1 1 . 2 9 2 . 2 5 0 . 2 2 0 . 8 2
110 TCP 1513 2010−02−24 0 2 : 2 0 : 2 9 1 9 2 . 1 6 8 . 1 1 2 . 1 9 2 . 2 5 0 . 2 2 2 . 8 1
80 TCP 1205 2010−02−24 0 2 : 2 0 : 2 9 1 9 2 . 1 6 8 . 1 1 . 1 9 2 . 2 5 0 . 2 2 0 . 8 2
80 TCP 1491 2010−02−24 0 2 : 2 0 : 3 1 1 9 2 . 1 6 8 . 1 . 2 9 2 . 2 5 0 . 2 2 0 . 8 3
110 TCP 1467 2010−02−24 0 2 : 2 0 : 3 9 1 9 2 . 1 6 8 . 1 2 . 2 9 2 . 2 5 0 . 2 2 1 . 8 1
80 TCP 927 2010−02−24 0 2 : 2 0 : 3 9 1 9 2 . 1 6 8 . 1 2 . 2 9 2 . 2 5 0 . 2 2 0 . 8 2
443 TCP 1294 2010−02−24 0 2 : 2 0 : 3 9 1 9 2 . 1 6 8 . 1 1 . 1 9 2 . 2 5 0 . 2 2 3 . 8 2
110 TCP 940 2010−02−24 0 2 : 2 0 : 4 9 1 9 2 . 1 6 8 . 2 1 . 2 9 2 . 2 5 0 . 2 2 1 . 8 1
80 TCP 917 2010−02−24 0 2 : 2 0 : 4 9 1 9 2 . 1 6 8 . 2 3 . 1 9 2 . 2 5 0 . 2 2 0 . 8 2
443 TCP 460 2010−02−24 0 2 : 2 0 : 5 9 1 9 2 . 1 6 8 . 2 6 . 2 9 2 . 2 5 0 . 2 2 0 . 8 5

Figure 3: Single dimension tree (source IP addresses) based on Traffic Flow Table 1, activity volume: number of bytes,
α = 10%

Figure 4: Single dimension tree (application) based on Traffic Flow Table 3, activity volume: number of bytes, α = 5%
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Figure 5: Example Application Taxonomy by TCP Port
Numbers

2. Percentage of aggregated activity (activity volume
defined as vol) for the current node

3. Cumulated percentage of activity of the node and its
subtree defined as acc_vol

Intuitively, a single dimension tree represent a subset
of the entire hierarchy (all the possible values) of a given
feature like illustrated in Figure 3.

Formally an IP address single dimension tree of N
nodes is [34]:

• A set of N nodes, where T = {n0 . . .nN} and ni =<
pre f ixi, pre f ix_lengthi,voli >. IP subnets are de-
composed using CIDR format [16]. pre f ixi and
pre f ix_lengthi are the prefix value and size of node
ni while voli is the entire traffic load associated to
the IP addresses included in the subnet ni.

• A parent-child relationship where a child : T →
P(T ) returns a set of child nodes for a given node.

Single dimension aggregation can also be done for
many other attributes such as protocol messages, port
numbers, spatial coordinates. Aggregation for TCP port
numbers, using data from Traffic Flow Table 3, is high-
lighted in Figure 4. In this case, every node represents an
application family or a specific one defined by the taxo-
nomic classification in Figure 5. In our paper, a dimen-
sion is a feature which the values may be represented in
a hierarchical tree with final values at the leaf nodes and
group values as internal nodes.

This definition can be extended for a generic dimen-
sion tree as follow:

• A set of N nodes, where T = {n0 . . .nN} and ni =<
fi,voli >. Where fi is an associative array modeling

Figure 6: Single dimension tree (Source IP addresses)
from Traffic Flow Table2

a dimension from a given traffic flow. For exam-
ple in case of application port fi = {app : valuei}
where app is a label and valuei is the a string mod-
eling a path in the taxonomic tree described in Fig-
ure 5. As mentioned before, it can a full path to a
leaf or an intermediate branch describing a sub fam-
ily of applications. For IP addresses, fi is {pre f ix :
pre f ixi , pre f ix_length : pre f ix_lengthi}.

• A parent-child relationship where a child : T →
P(T ) returns a set of child nodes for a given node.

Single dimension aggregation has proven to be an ef-
fective technique for practical network analysis methods
and anomalous network traffic detection [34, 8]. How-
ever, information from network traffic includes more
than one dimension. Furthermore, the anomalies can be
present in a combination of dimensions.

A port scanning has to consider the application/service
feature while IP scanning has to monitor IP addresses.
Assuming a botnet doing port scanning from and to mul-
tiple IP addresses, all these features (source and desti-
nation IP addresses, destination ports) need to be moni-
tored meanwhile to observe the attack activity globally.
So predicting the single dimension or the combination of
dimensions to monitor is hard.

Considering Traffic Flow Table 2 illustrating a naive
case of several hosts performing a DDoS against a web
server. IP address based aggregation (illustrated in Fig-
ure 6) cannot clearly detect it but aggregation using TCP
port will do. Another scenario is Traffic Flow Table 3. In
this case, a reduced group of hosts are targeting several
applications which cannot be caught by aggregation on
TCP ports. However, the multidimensional tree depicted
in Figure 7 is able to detect this behavior. This highlights
that 20% of the traffic is due to web session initiations
(HTTP) in 192.168.0.0/20 subnet.
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4.2 Multiple Dimensions
To extend the previous approach, we present an aggre-
gation technique for monitoring network using multiple
dimensions at the same time (eg: IP Address, Full Qual-
ified Domain Name (FQDN), TCP ports, GPS Coordi-
nates, etc). Multidimensional aggregation is performed
by using a user-defined threshold α and an interval of η
seconds. The latter defines the size of a time window.
For each of them, the data is assembled into a tree com-
posed of nodes, including multiple dimensions, where
only those such that acc_vol > α are kept.

In Figure 7, source and destination IP addresses and
application from Traffic Flow Table 3 are aggregated.

Assuming a data instance that can be decomposed in
many dimensions, a formal definition of a multidimen-
sional tree of M dimensions and N nodes is as follows:

• A set of M associative arrays that model the M di-
mensions

• A set of N nodes, where T = {n0 . . .nN} and ni =<
{ fi1 . . . fim},voli >, fi j ∈ { fi1 . . . fim} is an associa-
tive array modeling the j− th dimension according
to the previous definition

Thus, we can define fi1 = {pre f ix :
pre f ixi , pre f ix_length : pre f ix_lengthi} for
IP addresses. For the application/service level,
fi3 = {app : valuei} where app is a fixed label
and valuei is the a string modeling a path in the
taxonomic tree described in Figure 5.

• A parent-child relationship where a child : T →
P(T ) returns a set of child nodes for a given node.

5 Tree Based representations

The core idea of a tree-based aggregation mechanism is
to aggregate multi dimensional data for creating a sum-
mary of the network activity for each time window. Ag-
gregation can be used for post-analysis or for real time
monitoring. In the first scenario, memory and computa-
tional cost can be rise considerably for reaching a high
level of precision. However in the case of real time mon-
itoring execution time is a real constraint. Thus, two op-
timization strategies are introduced in Section 6 for real
time computing that may lead to a particle approach for
monitoring.

In this Section, we refer to the simple aggregation
which is executed at the end of each time windows.

5.1 Simple aggregation overview
As long as a single data instance is inputed, a leaf node
is built after extracting relevant information (dimensions

and values). to be inserted at the right place (or updating
the node in the tree if it already exists) creating interme-
diate nodes might be necessary, like nodes representing
intermediate IP subnets. If the node already exists, voli
is updated accordingly. For producing an outline after-
wards, the tree is traversed post-order to aggregate nodes
and to compute cumulative percentages (acc_vol). If the
activity volume, voli, of a node ni is less than the aggre-
gation threshold, α , it is aggregated to its parent node, n j.
Thus, the node ni is removed, voli is added to vol j and all
child nodes of ni are attached to n j. This allows to delete
intermediate nodes which do not represent large activity
volumes unlike their child nodes. Otherwise (voli < α),
the node is kept as it is.

Moreover, during the post-order traversal, activity vol-
umes, voli are computed as percentages. In fact, they
are stored as absolute values during the tree construction
since the total activity volume is not known. At the end,
thanks a global counter, VOL = ∑i voli, each voli is up-
dated accordingly, voli/VOL.

5.2 Directions
Due to the hierarchical relationships, we suppose there is
a strict order relation between values of the same dimen-
sion. For constructing the multidimensional prefix tree
structure, developing the concept of directions is neces-
sary. Intuitively the directions correspond to find the cor-
rect path in the tree to attach a node or to navigate within
the tree in order to access a given node.

Some dimensions are more likely to find or define a
natural direction. For example, IP addresses have two
directions, 0 or 1, modeling the next bit value. Regarding
the subnet X.Y.Z.0/24, all IP addresses which the 25th bit
is 1 (like X.Y.Z.128/25) will be placed on the left branch
while every others which this bit is 0 will be placed on
the right branch.

Other dimensions like UDP/TCP ports can be com-
pared as integers but it is not so relevant as services of
the same category like mail are not necessarily neighbors
in the port range. In this case, a hierarchical classifica-
tion, like in Figure 5, is required. In our tool the direction
function may be customized by the user. Direction func-
tion is used to label the parent-child relationship on the
multidimensional tree. Therefore, we also consider the
longest common prefix which represents the most spe-
cific common ancestor between two nodes

Assuming ni = < { fi1 . . . fim},voli > and n j = <
{ f j1 . . . f jm},vol j >, the longest common prefix is de-
fined as:

lcp(ni,n j) =< { flcp1 . . . flcpm} (1)

where flcpi is the most specific common part for the ith
dimension, which corresponds to the longest sequence of

7
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Figure 7: Multiple dimension aggregation based on Traffic Flow Table 3, α = 10%

Traffic Flow Table 2 Traffic Flow Table showing an example for a possible DDoS against a web server.

PORT PROTO KB TIME SOURCE DEST
80 TCP 895 2010−02−24 0 2 : 2 0 : 5 9 1 9 2 . 1 6 8 . 1 . 1 7 9 2 . 2 5 0 . 2 2 0 . 8 2
80 TCP 47 2010−02−24 0 2 : 2 0 : 5 9 1 9 2 . 1 6 8 . 1 . 2 5 9 2 . 2 5 0 . 2 2 0 . 8 2
80 TCP 570 2010−02−24 0 2 : 2 0 : 5 9 1 9 2 . 1 6 8 . 1 . 4 5 9 2 . 2 5 0 . 2 2 0 . 8 2
80 TCP 952 2010−02−24 0 2 : 2 0 : 5 9 1 9 2 . 1 6 8 . 1 . 4 4 9 2 . 2 5 0 . 2 2 0 . 8 2
80 TCP 408 2010−02−24 0 2 : 2 0 : 5 9 1 9 2 . 1 6 8 . 1 . 6 1 9 2 . 2 5 0 . 2 2 0 . 8 2
80 TCP 609 2010−02−24 0 2 : 2 0 : 5 9 1 9 2 . 1 6 8 . 1 . 9 9 2 . 2 5 0 . 2 2 0 . 8 2
80 TCP 690 2010−02−24 0 2 : 2 0 : 5 9 1 9 2 . 1 6 8 . 1 . 1 5 9 2 . 2 5 0 . 2 2 0 . 8 2
80 TCP 88 2010−02−24 0 2 : 2 0 : 5 9 1 9 2 . 1 6 8 . 1 . 2 9 9 2 . 2 5 0 . 2 2 0 . 8 2
80 TCP 997 2010−02−24 0 2 : 2 0 : 5 9 1 9 2 . 1 6 8 . 1 . 2 7 9 2 . 2 5 0 . 2 2 0 . 8 2
80 TCP 650 2010−02−24 0 2 : 2 0 : 5 9 1 9 2 . 1 6 8 . 1 . 9 9 2 . 2 5 0 . 2 2 0 . 8 2
80 TCP 298 2010−02−24 0 2 : 2 0 : 5 9 1 9 2 . 1 6 8 . 1 . 4 6 9 2 . 2 5 0 . 2 2 0 . 8 2
80 TCP 502 2010−02−24 0 2 : 2 0 : 5 9 1 9 2 . 1 6 8 . 1 . 5 2 9 2 . 2 5 0 . 2 2 0 . 8 2

Traffic Flow Table 3 Traffic Flow Table example for a destination address being targeted by reduced group of host .

PORT PROTO KB TIME SOURCE DEST
25 TCP 4660 2010−02−24 0 2 : 2 0 : 5 9 1 9 2 . 1 6 8 . 1 . 2 9 2 . 2 5 0 . 2 2 0 . 8 2
443 TCP 2417 2010−02−24 0 2 : 2 0 : 5 9 1 9 2 . 1 6 8 . 1 . 2 9 2 . 2 5 0 . 2 2 0 . 8 2
443 TCP 1945 2010−02−24 0 2 : 2 0 : 5 9 1 9 2 . 1 6 8 . 1 . 2 9 2 . 2 5 0 . 2 2 0 . 8 2
21 TCP 4206 2010−02−24 0 2 : 2 0 : 5 9 1 9 2 . 1 6 8 . 1 . 1 9 2 . 2 5 0 . 2 2 0 . 8 2
80 TCP 4336 2010−02−24 0 2 : 2 0 : 5 9 1 9 2 . 1 6 8 . 1 . 3 9 2 . 2 5 0 . 2 2 0 . 8 2
110 TCP 2110 2010−02−24 0 2 : 2 0 : 5 9 1 9 2 . 1 6 8 . 1 . 2 9 2 . 2 5 0 . 2 2 0 . 8 2
23 TCP 4257 2010−02−24 0 2 : 2 0 : 5 9 1 9 2 . 1 6 8 . 1 . 1 9 2 . 2 5 0 . 2 2 0 . 8 2
25 TCP 2005 2010−02−24 0 2 : 2 0 : 5 9 1 9 2 . 1 6 8 . 1 . 3 9 2 . 2 5 0 . 2 2 0 . 8 2
993 TCP 2434 2010−02−24 0 2 : 2 0 : 5 9 1 9 2 . 1 6 8 . 1 . 1 9 2 . 2 5 0 . 2 2 0 . 8 2
443 TCP 3270 2010−02−24 0 2 : 2 0 : 5 9 1 9 2 . 1 6 8 . 1 . 2 9 2 . 2 5 0 . 2 2 0 . 8 2
993 TCP 4775 2010−02−24 0 2 : 2 0 : 5 9 1 9 2 . 1 6 8 . 1 . 2 9 2 . 2 5 0 . 2 2 0 . 8 2
22 TCP 690 2010−02−24 0 2 : 2 0 : 5 9 1 9 2 . 1 6 8 . 1 . 3 9 2 . 2 5 0 . 2 2 0 . 8 2
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directions. Therefore, for IP address, this is a sequence
of bits which is similar to the standard definition.

Considering TM a M dimensional tree, defined in Sec-
tion 4.2, a multi-dimensional direction is defined as a tu-
ple of M directions (one for each dimension ):

∀ni ∈ TM,n j ∈ TM,nk ∈ TM,n j ∈ child(ni),nk ∈ child(ni)

nk �= n j ⇐⇒ direction(ni,nk) �= direction(n j,nk)

(2)

This corresponds to have only one child node per
unique tuple of directions. Conceptually, a direction can
be any tuples that allows to distinguish child nodes. Prac-
tically, it can usually match concrete value like the bit
values for IP address or the application subclass for TCP
ports. Directions are illustrated in figure 7 using a 3-tuple
(application, source and destination IP addresses). The
direction SAME was introduced to allow a child node to
be different from its parent on a subset of dimension val-
ues while some remain the same. Preliminary tests show
that this limits the number of internal nodes. However, at
least one direction of the tuple must not be SAME.

5.3 Tree Construction
Intuitively, the tree construction is done by creating a
root and then adding nodes or updating existing ones.
Based on the directions, a pre-order traversal is done
looking for a match to insert the node ni (line 4 in Algo-
rithm 1). Assuming that the traversal stops on the node
n j, there are different cases:

• if there is a perfect match (dimension values are the
same), the activity volume is updated vol j ← vol j +
voli. This is done in line 5 of algorithm 1.

• if ni is a child n j, a new child node is created by
computing the directions tuple from n j to ni (there is
not yet a node in this position otherwise the traver-
sal should have continue). This is done in line of
algorithm 1.

• otherwise, the traversal has followed the direction
but ends in a too specific node (it happens be-
cause no all possible internal nodes are cerated
for scalability issue, for instance X.Y.Z.0/24 may
be a child of X.Y.0.0/16 on the IP address di-
mension). In this case, a new branching point
(internal node) is created from lcp(ni,n j). So
ni and n j are the child nodes and directions are
then computed, i.e. direction(ni, lcp(ni,n j)) and
direction(n j, lcp(ni,n j)). This is done line 15 of
algorithm 1.

Therefore, by construction, every node represents a
subspace of its parent according to all dimensions.

Once the tree construction is finished (end of the time
window), aggregation takes place. Aggregation is done
by traversing the tree in post order to find nodes hav-
ing a activity volume voli ≤ α . These nodes are ag-
gregated into their parents. By doing this, directions are
discarded since they are only needed for the construction
and because they may not satisfy equation (2) due to the
deletion of internal nodes. Therefore, the k-dimensional
space is not divided a priori and the space is not split at
regular intervals. This allows, again, to have an irregular
granularity over the dimensions for efficiently monitor-
ing of the targeted events.

Algorithm 1 Update Tree insert_node(tree,ni)

1: if tree is empty then
2: tree.set_root(ni)
3: else
4: ni ← tree.search_matching_node(ni)
5: if n j matches all directions then
6: update n j volume {Perfect Match}
7: else
8: if n j is ni child then
9: {Partial Match}

10: for dim ∈ ni do
11: add ni to n j childs
12: end for
13: update tree set branching_point parent of n j

and ni
14: else
15: branch ← empty node {New Branch case}
16: for dim ∈ n j do
17: branch[dim] ←

Directiondim(n j[dim],ni[dim])
18: end for
19: update tree set branching_point parent of n j

and ni
20: end if
21: end if
22: end if

6 Online Tree Aggregation Strategies

Since memory consumption grows along with the size
of input data, and so the size of the tree, we developed
strategies for maintaining the tree structure under a pre-
defined size. Once the number of nodes is higher than
MAX_NODES, one of the following strategy is trig-
gered:

• Root aggregation: this strategy performs the simple
aggregation (as described in the previous section)
from the root

9
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• Least Recently Used (LRU): in this case the least
recently used nodes are candidates

These methods are qualified as online because they
perform pre-aggregation before the end of the time win-
dow for saving memory resources.

6.1 Root Aggregation
Root aggregation algorithm is shown in Algorithm 2. Ev-
ery time the tree grows over the user defined threshold,
the aggregation mechanism explained in Section 5.3 is
triggered. It is the most simple solution but not an effi-
cient mechanism since all nodes below the threshold α
are aggregated while the objective is to reduce the num-
ber of nodes to MAX_NODES. This can be seen in line
5 of Algorithm 2. The cost of the aggregation mecha-
nism triggered in line 6 is O(n× log(n)) [8]. Its worst
case complexity is O(n2 × log(n)) where n is the num-
ber of nodes. This is because worst case scenario rep-
resents triggering aggregation after every inserted node
(For Loop in line 2). Details related to mechanisms to
recover from direction incoherency entailed by internal
nodes deletion are included in the source files provided
(source file containing Tree class definition).

Algorithm 2 Build Tree T (dimensions,data)
1: tree ← empty_tree
2: for d ∈ data do
3: node ← build_node(d)
4: tree.insert_tree(node)
5: if tree.size > MAX_NODES then
6: tree.aggregate()
7: end if
8: end for

6.2 LRU Aggregation
Algorithm 3 consists of triggering aggregation on the
least recently used node only. The main idea behind this
mechanism is to label every node with a timestamped tag
that indicates the last time it was used. This is done in Al-
gorithm 4 and used in line 4 in Algorithm 3 for updating
the timestamp of nodes which have been gone through
when a node is inserted or updated (i.e. its parent and
ancestor nodes).

Aggregation is performed only for the least recently
used node. To achieve that, a min-max heap is employed
[2] structure using as key the timestamped tag present
in each node. Algorithm 4 implements this mecha-
nism extending Algorithm 1 functionality for labeling
and maintaining the heap structure used for retrieve the
LRU node. This corresponds to line 14 of Algorithm

4. This operation is based on updating a min max heap
which has a complexity of O(log2(n)) [2]. Assuming n,
the number of nodes, the average size of a tree branch is
log(n). If every node in the branch has to be updated,
an entry on the heap must be modified. Hence the sub-
cost of that operation is O(log2(n)) and in the worst case
O(n× log(n)) (a single branch of n nodes). To calculate
this complexity, else branch in line 5 of Algorithm 4 is
going to be executed. During the last for-cycle (line 14),
the list update_nodes will contain log(n) elements that
corresponding to the explored path to place node in tree.

After updating the last time used timestamp, the max
heap is updated with a complexity of O(log2(n)). So the
total complexity is O(log2(n)+ log(n)) = O(log2(n).

Algorithm 3 Build Tree LRU T (dimensions,data)
1: tree ← empty_tree
2: for d ∈ data do
3: node ← build_node(d)
4: tree.update_lru_tree(node)
5: if tree.size > MAX_NODES then
6: candidate ← tree.lru_heap.top()

Get the top element, candidate to be aggregated
7: candidate.aggregate()
8: end if
9: end for

Algorithm 4 Update Tree update_lru_tree(tree,node)

1: if tree is empty then
2: node.ltu ← now
3: update_nodes ← [node]
4: tree.set_root(node)
5: else
6: path ← tree.insert_node(node)
7: for n in reverse(path) do
8: n.ltu ← now
9: now ← now+1

10: update_nodes.append(n)
11: end for
12: end if
13: for n in update_nodes do
14: tree.ltu_heap.update(n)
15: end for

As highlighted in the else statement (line 5), the times-
tamp is updated such that the leaf node (inserted or up-
dated) has a timestamp older that its ancestors (reverse
path is constructed during the insertion itself without any
additional cost). This ensures that a leaf node is always
retrieved and aggregated in line 7 in Algorithm 3. Oth-
erwise, such an element could be an internal node and
aggregation may lead to remove entire subtrees.

10
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6.3 Issues
Since online aggregation is done by sequentially read-
ing data, a change of data ordering will produce different
results. Inserting the same data instance at the end of
the window will not have the same effect than at the be-
ginning since the tree may have already been aggregated
many times before. The impact of the data ordering will
be evaluated in section 7.3.

7 Evaluation

In this Section we evaluate the following main aspects of
the proposed tool:

• Scenarios showing aggregation benefits with multi-
ple types of data:

– Netflow

– SIP Messages

– Geographical coordinates associated to Net-
flow captures

– DNS names associated to Netflow captures

• Performance of the proposed strategies of online ag-
gregation

• Order of data impact on aggregation accuracy

For sake of clarity, only partial trees are shown in Fig-
ures. Except when mentioned, LRU strategy is applied.

7.1 Data sets
7.1.1 Netflow

NetFlow [9] was developed by Cisco Systems and is sup-
ported by many device vendors. Thus, Netflow or other
flow-based approaches are now considered as a standard
for IP monitoring. A flow record groups multiple pack-
ets sharing similar properties and in particular source and
destination addresses, protocols and ports. Available in-
formation includes useful information like a timestamp,
number of packets or bytes exchanged. The interested
reader can refer to [9] for further information.

Real Netflow captures were provided by one major
ISP in Luxembourg. As assumed to be free of attacks,
we also inject a realist attack in the same manner as in
[34] for assessing the ability of our approach to catch
valuable information about anomalies.

The duration of the capture is 26 days from
01/30/2010 to 02/24/2010 with an average number of
flows aroung 60,000/sec. A total of 279815 unique IP
addresses using 64470 different UDP and TCP ports are
represented.

The following information is extracted:

• Timestamp

• IPv4 Source Address

• IPv4 Destination Address

• TCP or UDP source port

• TCP or UDP destination port

• Traffic Volume in bytes is considered as the activity
volume (vol)

7.1.2 DNS Data sets

This dataset consists is enhanced compared to the pre-
vious on by performing a reverse DNS look up [24, 4]
for source and destination IPv4 addresses. Specifically,
on reverse DNS look up the pointer to canonical name
is retrieved (PTR) [26]. The dataset generated after
this method is still representative since every Internet-
reachable host should have a name according to [24, 4].
The hierarchical relationship on the DNS dimension is
straightforward by using the traditional order between a
domain and its subdomain.

7.1.3 Geographical coordinates Data sets

This dataset contains geographical coordinates associ-
ated to source and destination IPv4 address of every flow.
This is done by using GeoIP database available in [25].
Therefore, the dataset includes the same information as
the Netflow one and includes also the latitude and longi-
tude for source and destination IPv4 addresses. Defining
dimensions and directions for latitude or longitude is a
bit harder as it is not a discrete space. When nodes are
inserted in the tree in a way that a new one has to be
created, the latter is a rectangle area such that it contains
all child nodes using two directions (left and right and
top and bottom). This corresponds to compute minimal
and maximal values for both the longitude and latitude.
Another approach could have considered a taxonomy per
continent, country, region, city for example.

7.1.4 SIP Messages

SIP (Session Initiation Protocol) [32] is widely used
in VoIP networks. SIP messages are divided into re-
quests and responses. Keywords identify the type
of a request such as

while 3 digits numbers are used for responses
(STATUS). The first digit, between 1 and 6, indicates the
class (1xx: provisional, 2xx: success, 3xx: redirection,
4xx: client error, 5xx: server error, 6xx: global failure).
Therefore, SIP Messages can be classified hierarchically
according to the SIP Response Codes and SIP Request

11
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Figure 8: Similarity box plots for trees generated using
Netflow samples compared to trees generated after a the
same Netflow capture reversed for a 5 minutes window

Figure 9: Similarity box plots for trees generated using
Netflow samples compared to trees generated after the
same randomized flows for a 5 minutes window

Methods described in [32] similar to a taxonomy like in
Figure 5 where the first level of division from the root
node will be the request and responses types.

This dataset was collected on a local testbed and has
the following characteristics:

• 33952 SIP Messages, 17104 Requests, 16848 Re-
sponses

• 77 IP Addresses

• 38 Source IP Addresses, 266 source users

• 35 Destinations IP Addresses, 317 destination
users.

7.2 Metrics
Trees are among the most common and well-studied
combinatorial structures in computer science. The ag-
gregated tree construction is sensitive to the data order.
The goal is to measure the degree of similarity for trees

built from the same data but in a different order. The
Levenshtein distance [22, 7] is usually refereed as edit
distance between two strings. It is defined as the mini-
mum amount of operations to transform one string into
the other (deletion, insertion and relabeling or substitu-
tion). As an example the strings ”sos” and ”sbs” have
a distance of 1 by performing one substitution of ”o”
into ”b”. This notion of distance was initially defined
for strings where every operation has a single cost of 1.
As a node is a more complex structure, thus deletions
and insertions are always associated to a cost of 1. How-
ever substitutions in multidimensional nodes are decom-
posed into each dimension. According to the formal def-
inition of a M multidimensional tree, a node was defined
as ni = < { fi1 . . . fim},voli >. A distance function per
each dimension can calculate the cost of an operation as:

∑M
k=1 Distancek( f1k , f2k)

m

Thus, the distance function has to be defined for each
dimension. In our case, we define it based on the longest
common prefix between two IP addresses or on the
longest common path in the taxonomy tree for ports.

Tree distance can be computed by calculating a dis-
tance matrix as the result of the pair wise comparison
between the nodes of the trees to compare. Then we cal-
culate the average over the minimal distance of every row
and column.

7.3 Order of data impact

In order to evaluate the impact of data order we used the
similarity metrics described in Section 7.2. The focus
is set on analyzing the distortion of the tree shape after
altering the data order.

The evaluation was performed on 3 dimensions:
source IPv4 address, destination IPv4 address and TCP
port. For strengthen the evaluation, experiments are exe-
cuted 1000 times with different samples and percentiles
(25th, 50th, 75th) as well as minimal and maximal values
are then calculated and represented in a box plot graph
like Figure 8.

• Normal Sample vs Reversed Sample: This test con-
sists in comparing trees generated from a 5 minutes
sample (η = 5min) of the Netflow dataset and the
same data, i.e. Netflow records, in the reverse order.
In Figure 8, the similarity grows with aggregation
ratio α except for small values. This behavior is
logic as increasing the aggregating will keep track
of global phenomenas which are usually present in
the whole sample, not at a specific time unlike
local events, and so less sensitive to the data order.

12
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(a) 24 hours offset (b) 36 hours offset

Figure 10: Similarity - trees generated using Netflow samples compared to trees generated after a Netflow capture
from a offset using a 5 minutes window

• Normal Sample vs Random Sample: this test is sim-
ilar but data are not reversed but randomized. The
same observations can be made in Figure 9 even if
the impact of α is less visible.

7.4 Scenarios
It is important to note that the similarity is a number be-
tween 0 and 1 with 1 when the trees are identical. We can
observe from our experiments that the data order has an
impact on the aggregation process itself since the value
never reaches 1. However, it is important to verify that
the similarity value is lower when data differs. There-
fore, we can assumed that in most of cases, a similarity
higher than 0.6 may reflect similar data but which may
have been process in a different order.

7.4.1 Netflow

In order to evaluate the aggregation accuracy, several
tests over the Netflow dataset were conducted. The eval-
uation consists in comparing similar and different traf-
fic flows by observing the similarity variation. From
the dataset, 50 time windows (η = 5min) are randomly
picked up from working days between 01/30/2010 and
02/24/2010. Once the tree is built, it is compared with the
tree associated to data with a 24 hours or 36 hours offset.
Activity at the same time between two working days (24h
offset) is usually considered as similar and so should ex-
hibit a higher similarity than activity at a different times
between two days (36h offset). Figure 10 shows that the
similarity with a 36h offset decreases higher than with
the 24h offset, leading to an easier differentiation. Even
if the average similarity tends to be close between figures
10(a) and 10(b), the box plots clearly highlight a lower
stability with a 36h offset which leads to the same con-
clusion. With respect to experiments on the data order
(section 7.3), values are mainly lower than 0.6 for the

24h offset. Therefore, impact of the data order is lower
than the impact of activity variation at the same time be-
tween two consecutive days. From this point of view, our
approach is thus viable.

To evaluate the aggregation helpfulness in an mali-
cious environment, the following experiment has been
conducted:

• injection of DDoS attack directed against web
servers running on TCP port 80 with a repeated se-
quence (3 packets and 128 bytes) sent by burst of 10
packets every 60-120 milliseconds. The attack was
injected in two periods of 2 minutes each.

• 60 trees were generated, T0 . . .T59, to summarize
network activity (η = 25s,α = 0.05) by monitoring
both the source and destination IP addresses mean-
while

• we compute the edit distance as defined in Sec-
tion 7.2 between two trees to figure out the attacks:
z[n] = EditDistance(Tn,Tn+1)

In figure 11, the two attack occurrences are clearly
distinguishable by observing peaks due the high varia-
tion of the edit distance when the attacks start and end.
Although more advance techniques, as for example ma-
chine learning based methods, could be leveraged and
evaluated on other kinds of attacks, such a complete eval-
uation is not in the scope of the paper.

7.4.2 SIP Messages

In order to evaluate Aggregation accuracy for SIP mes-
sages, we tested the aggregation mechanism to detect
high volume of error messages which is helpful for fig-
uring out anomalies. As the testbed was locally made,
we were able to generate anomalies (bypassing the reg-
istration). From our traces, we extracted one tree before

13
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Figure 11: Distance Function Evaluation for aggregated
trees generated from Flow capture of a TCP Flood attack

(figure 12) and after (figure 13) the problem occurs. In
particular, a node containing an error (ProxyAuthentica-
tionRequired.ClientError) appears. A simple counter per
message type would also be able to detect it. However,
the tree informs that a relatively big portion of traffic
(7.32%) is concerned by this error on a single subnet,
192.168.1.0/29. It is helpful for identifying meanwhile
the sources from where the errors come and so for recov-
ering afterwards. Although this is a example to highlight
the benefits of our approach, more advanced technique
for analysis are possible. Retrieving automatically new
nodes or only nodes representing errors could help an
administrator.

From a general point of view, the trees produced by
MAM can be manually or automatically analyzed. For
manual analysis, this eases the understanding as the in-
formation is compacted and is sorted from top to bottom
by the impact (accumulated volume of activity). There-
fore, if an observation looks abnormal at a high level
in the tree, finding the root cause requires to follow the
parent-child relation. When reading the tree, the user can
easily follow the interesting branches like those related
to erroneous responses. Future visualizations techniques
could propose a dynamic navigation within the tree by
providing information on demand. Experiments where
conducted using (η = 120s−360s,α = 0.05)

7.4.3 DNS names associated to netflow captures

For DNS names, the dimension Domain, representing a
FQDN, takes in account top level domains and sub do-
mains separated by dots. Each dot is another split be-
tween a parent and its child in the hierarchical tree. Fig-
ure 14 illustrates the approach using the dataset described
in Section 7.1.2 by limiting our study to source IP ad-
dresses associated to the french top level domain (.fr do-
mains). We also consider the domains of destination IP
addresses. For example we can notice that most of traffic
originating from .fr to .com domains targets deezer.

Assuming a fast-flux botnet [30], the DNS names and
IP addresses should be monitored while considering the
inverse of the DNS Time-To-Live should be considered
as activity volumes. Using a short TTL and a large set
of IP addresses (usually compromised machines), the at-
tacker changes frequently the IP address associated to the
domain hosting malware. By using the inverse of TTL,
such behavior will appear using MAM by highlighting
the problematic domain and IP addresses or subnets. Ex-
periments were conducted summarizing network activity
using parameters (η = 0s−300s,α = 0.05−0.1)

7.4.4 Geographical coordinates associated to Net-
flow captures

Evaluating results of geographical coordinates aggrega-
tion requires a more sophisticated display structure. Rep-
resenting areas (ranges of geographical coordinates) in
a map shows more information rather than displaying a
tree with coordinates. Hence, the Google Maps API1 was
used to show a real map. Only flows having the origin
and destination in a fixed area (France or Europe) are ex-
tracted. The color opacity reflects the aggregated traffic
load by area. Figure 15(a) highlights that Luxembourg is
the center of the most inner square which is natural as the
dataset we used is provided by a Luxembourg operator,
and so most of flows are from and to hosts in this coun-
try. As an other illustrative example, a traffic diagram of
France is presented in figure 15(b) which logically high-
lights the concentration of network traffic around Paris.
These experiments show, that without specifically guid-
ing the aggregation by pre-defining geographical zones
or using cities, our method is able to figure out automati-
cally important parts, well known areas (around Paris) as
well as others (for example in South of France in figure
15(b)).

As another illustrative case, a content provider may
track his user location for optimizing the placement of
his servers or to provide locally profiled content.

7.5 Performance

Several benchmarks have been done in a 8 core Intel(R)
Xeon(R) CPU E5345@ 2.33GHz. They are based on the
running times regarding the number of nodes in a tree.
The Netflow dataset was used by considering source and
destination addresses as well as destination ports. As
introduced in Section 6, the worst case computational
complexity of the LRU strategy is n× log(n). In figure
16(b), the empirical results are quite lower. This behav-
ior can be explained because the worst case scenario is
a pathological case that is not usually common found in

1https://developers.google.com/maps/
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Figure 12: Aggregation for SIP conversations on networks 192.168.1.0/24, dimensions Message Type and source IP
Address - no error (Partial view)

Figure 13: aggregation for SIP conversations on networks 192.168.1.0/24, dimensions Message Type and source IP
Address - with errors (Partial view)

Figure 14: DNS names aggregation using as dimensions PTR records for source and destination (Partial view)
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(a) Internal Traffic aggregation for Europe (b) Internal Traffic aggregation for France

Figure 15: Aggregation example for Geographical coordinates associated to netflow captures aggregation for traffic
within Europe.

the captures. Furthermore, this is coherent with the av-
erage computational complexity (log2(n)) introduced in
Section 6.

Figure 16(a) highlights similar results for the simple
aggregation at the end of time windows. Therefore, algo-
rithms are equivalent from a computational power side.
Applying the LRU strategy does not entail any notable
overhead. However, from a memory point of view, the
LRU strategy saves a lot of memory space since the tree
size is bounded by MAX_NODES.

The average size of the trees before and after the ag-
gregation is given in table 1 when no LRU strategy is
used during our previous experiments. First, using LRU
strategy strongly limits the memory usage since the tree
size before aggregation is quite higher 1000 (default
value for MAX_NODES when LRU is applied) except
for SIP since the dataset was generated on a local testbed.
Therefore, in real scenarios, memory usage is highly re-
duced during the tree construction, which improves the
scalability. α set to 5% provides good results in previous
experiments while the number of nodes after the aggre-
gation at the end of a time window is drastically reduced.
The tree size never exceeds 90 nodes. Therefore, scala-
bility is again increased from a storage point of view as
well as for doing analysis (manual or automated) on the
final built trees.

Support real-time flow aggregation is validated by as-
sociating Table 1 and figure 16(b), 3288 netflow records
(average number of flows in a 5 minutes window) are
always aggregated in less than 100 seconds, this allows
to aggregate flows in real-time. Memory consumption
can be computed as the sum of the dimensions data type
size and the tree final size. For GPS coordinates ev-
ery node holds 32 bits for 2 integers. Regarding the

Average tree
size before
aggregation

Average tree size
after aggregation

Netflow 3288 90
DNS 8600 53
SIP 1077 18
Geographical 14664 45

Table 1: Tree size reduction using aggregation (average
on all time windows) with α = 0.05

data structure 8 additional bytes and a list of pointers
(4 bytes in 32bits) to the children are required. With
an average tree size of 14664 nodes tree this results in
14664× (4+8+8) = 286.4MB.

8 Conclusion

In this paper, a multidimensional aggregation is intro-
duced which is able to handle the multiple dimensions
without having any predefined order. The aggregation
increases the scalability by compressing data and by cre-
ating summarized outputs which are smaller and easier
to analyse. Moreover, the aggregation is guided by the
nature of the events to monitor, i.e. a configurable ac-
tivity volume. This leads to split the space into partition
of different sizes. Hence, distributed coordinated behav-
iors can be observed unlike traditional approaches rely-
ing on a regular space division which does not necessar-
ily reflect the current distribution on the network activity.
Based on formal definitions, this paper highlights the use
of common dimensions related to network administra-
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(a) Time performance for simple aggregation

(b) Time performance for LRU aggregation

Figure 16: Time performance for different strategies

tion like IP addresses, applications, DNS, but could be
extended to any other kinds of dimensions such as po-
lar coordinates by extending the feature class and imple-
menting the requested methods in the API. We provide an
open source tool2 to export png file or Google Maps and
provide ready to use implementations of IP addresses,
applications, DNS and GPS features.

Experiments focus on sample scenarios where the ag-
gregation reveals important facts or changes in the net-
work. Theoretical as well as practical complexities were
studied, in particular to prove the benefits of using a LRU
strategy for improving the scalability of our approach.
Furthermore, the data order problem due to such a pro-
cess was evaluated and the results highlight a negligi-
ble impact. Similarly to our previous work on single
dimension aggregation [34], aggregated trees are also
good candidates for data mining algorithms and not ex-
clusively dedicated to being processed by a human ex-
pert. Therefore, our next work will focus on this topic
and on the definition of other dimensions like IPv6 ad-
dresses.
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